This article was downloaded by:
On: 22 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Asian Natural Products Research

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713454007

Synthesis and enantiomeric resolution of (\pm)-pinocembrin

 ${ }^{\text {a }}$ Institute of Materia Medica, Peking Union Medical College \& Chinese Academy of Medical Sciences, Beijing, China

To cite this Article Yuan, Yue , Yang, Qing-Yun, Tong, Yuan-Feng, Chen, Feng, Qi, Yan , Duan, Ya-Bo and Wu, Song(2008) 'Synthesis and enantiomeric resolution of (\pm)-pinocembrin', Journal of Asian Natural Products Research, 10: 10, 999 - 1002
To link to this Article: DOI: 10.1080/10286020802240418
URL: http://dx.doi.org/10.1080/10286020802240418

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.
```


Synthesis and enantiomeric resolution of (\pm)-pinocembrin

Yue Yuan, Qing-Yun Yang, Yuan-Feng Tong, Feng Chen, Yan Qi, Ya-Bo Duan and Song Wu* Institute of Materia Medica, Peking Union Medical College \& Chinese Academy of Medical Sciences, Beijing, China

(Received 11 March 2008; final version received 28 April 2008)

Abstract

A convenient method for the synthesis and enantiomeric resolution of (\pm)-pinocembrin has been developed. This route involves the hydrogenation of 5,7-dihydroxyflavone, the derivatization of racemic pinocembrin with chiral amine, and the separation of the diastereoisomers due to their different physical properties.

Keywords: pinocembrin; synthesis; enantiomeric resolution; chiral amine

1. Introduction

Pinocembrin (Figure 1), a flavanone, has a chiral center at C-2. (S)-Pinocembrin, $[\alpha]_{D}^{15}$ -45.3 ($c .0 .9$, acetone), has been isolated from propolis, Pinus cembra, Eucalyptus sieberi, Alnus sieboldiana, etc., which has been reported to have many pharmacological actions including therapeutical effect for cardio/cerebrovascular diseases, anti-inflammatory, antibacterium, antioxidant, and testosterone 5α-reductase inhibitory activities [1-3]. Its promising pharmacological profiles coupled with its low natural content have attracted much attention from us. Herein, we would like to describe a method for the synthesis and resolution of the racemic pinocembrin.

2. Results and discussion

(\pm)-Pinocembrin (1) has been synthesized via 5,7-dihydroxyflavone as the starting material in one step (Scheme 1). Hydrogenation of $\mathbf{2}$ with $10 \% \mathrm{Pd}-\mathrm{C}$ and H_{2} affords $\mathbf{1}$ in 84% yield.

As shown in Figure 1, the asymmetry C-2 is the chiral center of pinocembrin. To resolve the enantiomers by derivatization, we focus
on the carbonyl group. The protection of the 7-hydroxyl of pinocembrin (1) with benzyl chloride affords compound $\mathbf{3}$ in 93% yield. The treatment of $\mathbf{3}$ with (L$)-(-)-\alpha$-methylbenzylamine using TiCl_{4} as a catalyst and separation of the product via column chromatography give 4a and 4b in 55\% yield. The hydrolysis of $\mathbf{4 a}$ and $\mathbf{4 b}$, respectively, furnishes 3a and 3b in 92 and 91% yield. Finally, (S)-pinocembrin and (R)-pinocembrin are obtained, respectively, by the hydrogenolysis of the benzyl groups of compounds 3a and 3b in 91 and 93% yield.

3. Experimental

3.1 General experimental procedures

Melting points were obtained on a YRT-3 Temp apparatus and are uncorrected. Optical rotations were measured on a Perkin-Elmer 2401 MC Autopol polarimeter. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian Mercury400 NMR spectrometer, and MS on a ZAB-2F Mass spectrometer. TLC was carried out on silica gel layers (Qingdao Haiyang Chemical Co., Ltd Qingdao, China).

[^0]

Figure 1. Structure of (\pm)-pinocembrin.

3.2 (\pm)-Pinocembrin (1)

Compound 2 ($5 \mathrm{~g}, 19.7 \mathrm{mmol}$) and $10 \% \mathrm{Pd}-\mathrm{C}$ $(1 \mathrm{~g})$ were added in $\mathrm{EtOH}(650 \mathrm{ml})$. The mixture was then hydrogenized at $60^{\circ} \mathrm{C}$ and 3 atm for 2 h . After filtration, the solvent was evaporated under reduced pressure, and the resultant residue was chromatographed $\left[\mathrm{SiO}_{2}\right.$, petroleum ether (b.p. $60-90^{\circ} \mathrm{C}$)-ethyl acetate-methanol 100:10:2] to afford compound $1(3.9 \mathrm{~g}, 77 \%)$; m.p. $200-201^{\circ} \mathrm{C}$ (Ref. [4] 199-200 ${ }^{\circ}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 12.03\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{OH}\right), 7.46-7.37$
(m, 5H, Ar-H), $6.00\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{8}-\mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right), 5.43$ (dd, $1 \mathrm{H}, \mathrm{C}_{2}-\mathrm{H}, J=3.2,12.7 \mathrm{~Hz}$), 3.09 (dd, $1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}, J=17.1,12.7 \mathrm{~Hz}$), 2.83 (dd, 1 H , $\mathrm{C}_{3}-\mathrm{H}, J=17.1,3.2 \mathrm{~Hz}$); EIMS m/z (\%): 256 [$\left.\mathrm{M}^{+}, 75\right], 124\left[\mathrm{M}^{+}-\mathrm{C}_{8} \mathrm{H}_{8}-\mathrm{CO}, 100\right]$.

3.3 7-Benzyloxy-5-hydroxyflavanone (3)

A mixture of 5,7-dihydroxyflavanone (1) $(12.76 \mathrm{~g}, 50 \mathrm{mmol})$, benzyl chloride $(7.5 \mathrm{ml}$, $65 \mathrm{mmol})$, potassium iodide $(0.46 \mathrm{~g}, 2.75$ mmol), and anhydrous potassium carbonate ($7.60 \mathrm{~g}, 55 \mathrm{mmol}$) in acetone (200 ml) was heated under reflux for 2 h . Then, the mixture was filtered under reduced pressure to give the crude product. Compound $\mathbf{3}$ was purified from light petroleum, forming clusters of almost colorless ($16.21 \mathrm{~g}, 93 \%$); m.p. $80-82^{\circ} \mathrm{C}$ (Ref. [5] $\left.67-69^{\circ} \mathrm{C}\right)$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 11.93\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{OH}\right)$, $7.39-7.27(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.08\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{8}-\mathrm{H}\right)$, $6.07\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right), 5.35\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}_{2}-\mathrm{H}, J=2.8\right.$,

a

Scheme 1. Synthesis and resolution of pinocembrin. Reagents and conditions: (a) $\mathrm{Pd}-\mathrm{C}(10 \%)$, EtOH , $60^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (b) $\mathrm{BnCl}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{KI}$, acetone, reflux, 2 h ; (c) (L$)-(-)-\alpha$-methylbenzylamine, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{TiCl}_{4}$, benzene, $\mathrm{N}_{2}, 48 \mathrm{~h}$; (d) $\mathrm{HCl}(1 \mathrm{~N}), \mathrm{EtOH}, \mathrm{EtOAc}$, reflux, 1.5 h ; (e) $\mathrm{Pd}-\mathrm{C}(10 \%), \mathrm{DMF}, \mathrm{HCl}(1 \mathrm{~N}), 4 \mathrm{~h}$.
$12.8 \mathrm{~Hz}), 5.00\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{CH}_{2}\right), 3.02(\mathrm{dd}, 1 \mathrm{H}$, $\mathrm{C}_{3}-\mathrm{H}, J=17.2,12.8 \mathrm{~Hz}$), 2.75 (dd, $1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}$, $J=17.2,2.8 \mathrm{~Hz}$); ESIMS m/z (\%): 347.1 $\left[\mathrm{M}+\mathrm{H}^{+}, 100\right], 369.1\left[\mathrm{M}+\mathrm{Na}^{+}, 5\right]$.

3.4 (2S)-7-Benzyloxy-2-phenyl-4-((S)-1-phenylethylimino)chroman-5-ol (4a) and (2R)-7-benzyloxy-2-phenyl-4-((S)-1-phenylethylimino)chroman-5-ol (4b)

A dried three-necked round-bottomed flask equipped with a dropping funnel and thermometer was charged with 7-benzyloxy-5hydroxyflavanone (3) ($14.98 \mathrm{~g}, 43.3 \mathrm{mmol}$) and dry benzene $(100 \mathrm{ml})$. The solution was then cooled to $0^{\circ} \mathrm{C}$ with ice under a N_{2} atmosphere, and to it was added a solution of (L)-(-)- α-methylbenzylamine (Aldrich, 98%; $5.57 \mathrm{ml}, 43.3 \mathrm{mmol}$) and triethylamine (12 ml , 86.6 mmol) in dry benzene (20 ml). While the temperature was kept below $10^{\circ} \mathrm{C}$, a solution of $\mathrm{TiCl}_{4}(2.39 \mathrm{ml}, 22 \mathrm{mmol})$ in dry benzene $(10 \mathrm{ml})$ was added dropwise over 15 min . The red-brown suspension was allowed to warm to room temperature and stirred for $24-48 \mathrm{~h}$. The suspension was filtered through a funnel charged with Celite. The filtrate was concentrated in vacuo to give a red-brown oil that was chromatographed $\left(\mathrm{SiO}_{2}\right.$, petroleum ether (b.p. $60-90^{\circ} \mathrm{C}$)-ethyl acetate $10: 1$) to afford compounds $4 \mathbf{a}(5.93 \mathrm{~g})$ and $\mathbf{4 b}(4.26 \mathrm{~g})$ as yellow oil (total yield 55\%). Compound 4a: $[\alpha]_{\mathrm{D}}^{20}+149.8$ (c. 0.5 , acetone); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 11.93(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{C}_{5}-\mathrm{OH}$), 7.36-7.15 (m, 15H, Ar-H), 6.04 (d, $\left.1 \mathrm{H}, \mathrm{C}_{8}-\mathrm{H}, J=4.0 \mathrm{~Hz}\right), 5.86\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right.$, $J=4.0 \mathrm{~Hz}), 5.06\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}_{2}-\mathrm{H}, J=12.0 \mathrm{~Hz}\right)$, 4.95 (s, 2H, $\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{CH}_{2}$), 4.74 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{CH}$), $3.00\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}, J=16.0 \mathrm{~Hz}\right), 2.48(\mathrm{dd}, 1 \mathrm{H}$, $\left.\mathrm{C}_{3}-\mathrm{H}, J=12.0,16.0 \mathrm{~Hz}\right), 1.58\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$, $J=8.0 \mathrm{~Hz}) ; \operatorname{ESIMS} m / z(\%): 450.3\left[\mathrm{M}+\mathrm{H}^{+}\right.$, 100], 899.4 [$2 \mathrm{M}+\mathrm{H}^{+}, 72$]; compound $\mathbf{4 b}$: $[\alpha]_{\mathrm{D}}^{20}+62.0$ (c. 0.6 , acetone); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 12.07(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{C}_{5}-\mathrm{OH}\right), 7.46-7.29(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.17$ (d, $\left.1 \mathrm{H}, \mathrm{C}_{8}-\mathrm{H}, J=4.0 \mathrm{~Hz}\right), 6.00\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right.$, $J=4.0 \mathrm{~Hz}), 5.06\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{CH}_{2}\right), 5.01(\mathrm{dd}$, $\left.1 \mathrm{H}, \mathrm{C}_{2}-\mathrm{H}, J=4.0,12.0 \mathrm{~Hz}\right), 4.81(\mathrm{q}, 1 \mathrm{H}$, $\mathrm{N}-\mathrm{CH}, \quad J=8.0 \mathrm{~Hz}), 2.99\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right.$,
$J=4.0, \quad 16.0 \mathrm{~Hz}), 2.89\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right.$, $J=12.0, \quad 16.0 \mathrm{~Hz}), \quad 1.59\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$, $J=8.0 \mathrm{~Hz}$); ESIMS $\mathrm{m} / \mathrm{z} \quad$ (\%): 450.3 $\left[\mathrm{M}+\mathrm{H}^{+}, 100\right], 899.4\left[2 \mathrm{M}+\mathrm{H}^{+}, 89\right]$.

3.5 (S)-7-Benzyloxy-5-hydroxyflavanone (3a)

A mixture of compound $\mathbf{4 a}(5.93 \mathrm{~g}, 13.2 \mathrm{mmol})$, ethyl acetate (50 ml), ethanol (30 ml), and hydrochloric acid ($1 \mathrm{~mol} / \mathrm{L}, 30 \mathrm{ml}$) was heated under reflux for 1.5 h . The reaction mixture was cooled to room temperature and neutralized with aqueous sodium hydroxide $(10 \%, \mathrm{w} / \mathrm{v})$ to pH 6 . The reaction mixture was cooled to room temperature and compound 3a came out as clusters of almost colorless $(4.19 \mathrm{~g}, 92 \%)$; m.p. $91.8-92.5^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}-30.78$ (c. 0.5 , acetone); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm}): 12.06$ (s, $1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{OH}$), 7.52-7.33 (m, 10H, Ar-H), $6.21\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{8}-\mathrm{H}\right), 6.17\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right), 5.62(\mathrm{dd}$, $\left.1 \mathrm{H}, \mathrm{C}_{2}-\mathrm{H}, J=3.2,12.0 \mathrm{~Hz}\right), 5.17(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{2}\right), 3.31\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}, J=12.4\right.$, $17.7 \mathrm{~Hz}), 2.81\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}, J=3.2,17.7 \mathrm{~Hz}\right)$; ESIMS $m / z(\%): 347.1\left[\mathrm{M}+\mathrm{H}^{+}, 100\right]$.

3.6 (R)-7-Benzyloxy-5-hydroxyflavanone (3b)

Compound 3b was prepared by the same procedure for $\mathbf{3 a}$ using $\mathbf{4 b}$ as the starting material ($4.26 \mathrm{~g}, 9.5 \mathrm{mmol}$). The title compound $\mathbf{3 b}$: clusters of almost colorless $(2.98 \mathrm{~g}$, 91%); m.p. $97.9-98.4^{\circ} \mathrm{C} ; \quad[\alpha]_{\mathrm{D}}^{20}+30.88$ (c. 0.5, acetone); ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO- d_{6}) $\delta(\mathrm{ppm}): 12.06\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{OH}\right)$, 7.52-7.33 (m, 10H, Ar-H), $6.21(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{C}_{8}-\mathrm{H}\right), 6.17\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right), 5.63\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}_{2}-\mathrm{H}\right.$, $J=2.8,12.4 \mathrm{~Hz}), 5.17\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{2}\right)$, $3.31\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}, J=12.4,16.4 \mathrm{~Hz}\right), 2.81$ (dd, $1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}, J=2.8,16.4 \mathrm{~Hz}$); ESIMS m / z. (\%): $347.1\left[\mathrm{M}+\mathrm{H}^{+}, 100\right]$.

3.7 (S)-5,7-Dihydroxyflavanone (1a)

Compound 3a ($4.19 \mathrm{~g}, 12.1 \mathrm{mmol}$), $10 \% \mathrm{Pd}-\mathrm{C}$ (3.35 g), and dilute hydrochloric acid (20 ml) were added in DMF $(70 \mathrm{ml})$. The mixture was then hydrogenized at room temperature for 4 h . The catalyst was removed by filtration, and the
solvent was evaporated under reduced pressure. The resultant residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether (b.p. $60-90^{\circ} \mathrm{C}$)-ethyl acetate $5: 1$) to afford pure 1a as a white powder ($2.82 \mathrm{~g}, 91 \%$); m.p. $192-193^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}-45.63$ (c. 0.5 , methanol); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta(\mathrm{ppm}): 12.11$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{OH}$), $10.81\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{7}-\mathrm{OH}\right), 7.51-$ 7.37 (m, 5H, Ar-H), 5.91 (s, 1H, C $\mathrm{C}_{8}-\mathrm{H}$), 5.88 (s , $\left.1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right), 5.57\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}_{2}-\mathrm{H}, J=3.2\right.$, $12.6 \mathrm{~Hz}), 3.24\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}, J=12.6\right.$, $17.0 \mathrm{~Hz}), 2.77\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}, \quad J=3.2\right.$, 17.0 Hz); HRESIMS $m / z 257.0818$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{4}, 257.0813$) (Ref. [6] 194- $195^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{32}-52(c .0 .19$, methanol)).

3.8 (R)-5,7-Dihydroxyflavanone (Ib)

Compound 1b was prepared by the same procedure for $\mathbf{1 a}$ using $\mathbf{3 b}$ as the starting material $(2.98 \mathrm{~g}, 8.61 \mathrm{mmol})$. The title compound 1b: white powder ($2.05 \mathrm{~g}, 93 \%$);
m.p. $191.3-192.4^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+45.83$ (c. 0.5 , methanol); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta(\mathrm{ppm}): 12.11\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{OH}\right), 10.81(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{C}_{7}-\mathrm{OH}\right), 7.51-7.37$ (m, 5H, Ar-H), 5.91 (s, 1H, $\left.\mathrm{C}_{8}-\mathrm{H}\right), 5.88\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right), 5.57\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}_{2}-\mathrm{H}\right.$, $J=3.2, \quad 12.6 \mathrm{~Hz}), 3.24\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right.$, $J=12.6,17.0 \mathrm{~Hz}), 2.77\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right.$, $J=3.2,17.0 \mathrm{~Hz}$); HRESIMS $\mathrm{m} / \mathrm{z} 257.0817$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{4}, 257.0813$).

References

[1] G.H. Du, H.X. Zhang, D.Q. Yu, Y.J. Li, and S. Wang, CN 1695608.
[2] P.D. Bremner and J.J.M. Meyer, Planta Med. 64, 777 (1998).
[3] M.R. Camacho, J.D. Phillipson, S.L. Croft, V. Yardley, and P.N. Solis, Planta Med. 70, 70 (2004).
[4] H. Tatuta, Chem. Abstr. 37, 376 (1943).
[5] O. Muneharu, H. Sueo, and I. Isao, Chem. Abstr. 74, 1107 (1971).
[6] F. Hiroshi, G. Katsumi, and T. Mamoru, Chem. Pharm. Bull. 36, 4174 (1988).

[^0]: *Corresponding author. Email: ws@imm.ac.cn

